
Curriculum and Instruction

CTE
COURSE OF STUDY OUTLINE

Title ofCourse ofStudy ___C__o=m==,s;p__u__te=r:a...=S....c__ie=n=c---e.....1___CT=---E=------

(A . db Cu . l DCourse Number: ssigne 1y mcuum epartment)

CTE Course ofStudy Adoption Process
PROCEDURES:

1 Write/revise course ofstudy
2 Review with CTE Principal and acquire signature
3 Email course of study to appropriate CTE sector staff at all

hieh schools with link to Curriculum Council survey
4 Attach copy of survey and comments along with sign in sheet

from required department meeting.
5 Meet with appropriate department teachers to discuss responses, review

course ofstudy and sign. Attendance sheet ofmeeting is required
6 Technology review/sign prior to submission required if any

technolo2V components used
7 Course ofstudy MUST be complete, including required signatures, and

· submitted to Curriculum Dept. 2 weeks prior to the scheduled
Curriculum Council meeting.

8 Assistant Superintendent, Curriculum &Instruction- Review/Sign
9 Assistant Superintendent, Secondarv Education - Review /Sign
10 Present course ofstudy to Curriculum Council
11 Curriculum Council Recommends
12 Board of Education Approves

INote: Please complete all sections. Enter ''none" or "n/a,, as appropriate.

I. Course Title: Computer Science 1 CTE

II. Industry Sector: Information and Communication Technologies

Pathway Name: System Programming Pathway No. 174.A Calpads: 8131
□ Introduction Course Course of Study Proposal Reason:
X Concentrator Course X New Course
□ Capstone Course Curriculum Update

Textbook Update
UC/CSU a-g Update
Course Title Change

III. Length ofCourse: _______ Credit Value:
-----'X=-_ Meets Lodi USD high school graduation requirement credits
_____Elective Course credit _____ No Credit

1 Computer Science 1 CTE

IV. Grade:
X 9th

X 101h

X nth

12th

V. Course Level: XGeneral CP Honors Pre-AP AP

VI. Is this an Internet-based course?
If so, who is the course provider?

Yes X No (e.g. Apex, Odysseyware...)

VII. UC/CSU Approved Course:
Do you wish to submit this course to the UCOP to obtain UC/CSU a-g approval?
X Yes No
Is this course modeled after a UC-approved course from another district?
X Yes No If so, which school/district?
Da Vinci Charter Academy / Davis JUSD - Intro to Coding & CS

VIII. Recommended UC/CSU Subject Area Pathway:
(Please complete each section c1s required by the UC system)

A. History/Social Science E. Languages Other than English
B. English F. Visual/Performing Art
C. Math G. Elective

X D. Lab Science

IX. SubjectArea Codefor Lodi USD Graduation Requirements (select all that apply):

B. Fam Lug/World Geography L. Life Science
C. Economics M. Mathematics
D. Driver's Ed P. Physical Education
E. English S. Physical Science

X F. Fine Arts/For Lang/CTE U. US History
G. Government W. World History
H. Health/Safety Y. Elective

2

Programming with Python CTE

X. COURSE DESCRIPTION: Use this section to emphasize the core knowledge and
skills students are expected to learn in the course, including concepts, theory and
texts. There should be clear evidence ofthe course's level ofrigor and the
development ofessential critical thinking skills.

The Course Description is comprised ofthree sections:

1. COURSE OVERVIEW: Students will learn to program classic video games
(pong, pac-man, tetris, etc) utilizing Carnegie Melon University's CS Academy
curriculum (acadenw.cs.cmu.edu) and will conduct a series ofhands-on
experiments with micro:bit microcontrollers (microbit.01·g) emphasizing relevant
Internet ofThings (IoTJ applications. Students will learn the basic constructs of
programming, including variables, constants, expressions, control structures,
functions and arrays. No priorprogramming knowledge or experience required.

2. HIGHLY RECOMMENDED Co-REQUISITES:
Integrated Math 1 or equivalent

3. COURSE CONTENT:

Students will earn a "Certificate of Completion" from Carnegie Mellon University for
completing the following 12 Units:

Unit 1: Create Drawings

Shapes You Can Draw

Shapes with radius

• Circle(centerX, centerY, radius)
• Star(centerX, centerY, radius, points)
• RegularPolygon(centerX, centerY, radius, points)

o Draws a shape with the specified number ofpoints evenly spaced around the
circle defined by (centerX, centerY) and radius.

Shapes with width/height

• Rect0eft, top, width, height)
o Rectangles are drawn from their left-top coordinate by default.

• Oval(centerX, centerY, width, height)

Miscellaneous

Line(x1, y1, x2, y2)

• Label(value, centerX, centerY)
o 'value' is the text displayed by the label.

• Polygon(x1, y1, x2, y2, x3, y3, ...)
o Think ofa Polygon like connect-the-dots. Each (x, y) pair is a dot. Lines are

drawn between consecutive points, and the enclosed area is filled in.

3

Programming with Python CTE

https://acadenw.cs.cmu.edu

■ There is no upper limit to the number of points in a polygon, but it will
not be drawn unless there are at least three (having o, 1, or 2 will not
raise an error).

3 Weeks (16 Days)

• 1.1 Notes and Exercises (3 Days)
• 1.2 Notes and Exercises (3 Days)
• 1.3 Notes and Exercises (3 Days)
• 1.4 End ofUnit Exercises (2 Days)
• Creative Tasks (3 Days)
• Review/Quizzes (2 Days)

Example Exercise Lighthouse

Unit 2: Functions, Mouse Events, and Properties

Functions

A function is a piece of code that can take inputs and perform a certain task. Functions make
performing repetitive tasks, like drawing collections of shapes, a whole lot quicker and easier.

Mouse Events

You can click on the canvas to interact with it in interesting ways. The first two mouse events
you'll learn are onMousePress(mouseX, mouseY) and onMouseRelease(mouseX, mouseY).
onMousePress is called when the mouse is pressed, and onMouseRelease is called when the
mouse is released (we pride ourselves on our original naming).

It is important to note that these two functions are special. They are part ofa group of
functions called event handlers. This means that we do not have to call these functions
ourselves-the graphics package already does it for us. Whenever a certain event occurs, such
as a mouse press or mouse release, the appropriate function is automatically called. Functions
we write ourselves are different, because we have to call them in order for them to work.

Using these event handlers, let's make a function that draws a flower wherever we press the
mouse.

Variables

You can store a shape in something called a variable. This is valuable if you want to change
one ofits properties later. Below, we draw two identical circles at different locations on the
x-axis. However, in onMousePress(...), we change their properties in different ways.

Properties

Every shape has properties, which determine its position, size, and appearance. We set these
properties initially with the arguments we provide when we create the shape, but we can also
change them later on.

4

Programming with Python CTE

For example, rectangles have the property of height. In the call Rect(o, o, 10,200), 200 is the
argument that specifies the property of height.

• The distinction isn't that important, so don't get caught up in it. Just know how to use
them. We're CS Academy, not Semantics Academy

2 Weeks (11 Days)

• 2.1 Notes and Exercises (2 Days)
• 2.2 Notes and Exercises (2 Days)
• 2.3 Notes and Exercises (1 Day)
• 2.4 End of Unit Exercises (1 Day)
• Creative Tasks (3 Days)
• Review/Quizzes (2 Days)

Example Exercise Eat the Cooke

Unit 3: Mouse Motion Events, Conditionals, and Helper Functions

Mouse Motion Events

In addition to onMousePress and onMouseRelease, we have onMouseMove and
onMouseDrag. Just like onMousePress and onMouseRelease, these names are pretty self
explanatory. Moving your mouse over the canvas will trigger onMouseMove(...); clicking,
holding down, and dragging will trigger onMouseDrag(...).

Conditionals

Any code contained within an if statement will only run when the condition is satisfied (in
other words, it evaluates to True).

Conceptually, conditionals are quite simple, but in practice the logic can get very tricky and
easily tangled. Don't worry-they get easier with extensive practice.

Helper functions

A function that you call within another function is called a helper function. It behaves the
same as any other function, so there's nothing new to learn here. Helper functions are used to
keep code neat inside a particularly long function. For example, let's say you want to draw a
pizza on the canvas. You will need to draw the crust, the sauce, and a variety oftoppings. To
keep your pizza-drawing function from becoming too lengthy and difficult to read, you could
make a helper function for the crust & sauce, as well as helper functions for each type of
topping.

3 Weeks (13 Days)

• 3.1 Notes and Exercises (2 Days)
• 3.2 Notes and Exercises (2 Days)
• 3.3 Notes and Exercises (3 Days)
• 3.4 End ofUnit Exercises (1 Day)
• Creative Tasks (3 Days)
• Review/Quizzes (2 Days)

s

Programming with Python CTE

"Example Exercise Puffy Penguin

Unit4: More Conditionals, Key Events, and Methods

If-elif-else, vs. multiple ifs

Think ofeach ifstatement as a door. When the condition you pass to the ifstatement is true,
you're allowed to open it. Say you have 3 "if' doors. Say you pass the first if statement. Then
you can open the first door, go inside, and crucially, you can go back outside and check the
other doors. This means that you should only use multiple ifs in a row ifyou are checking
conditions that are not mutually exclusive. Now say you have an "if' door, an "elif' door, and
an "else" door. Again, let's imagine that you pass the first if statement. Then as soon as you
open the door and go inside, the door is locked behind you; you cannot evaluate any of the elif
statements. As you can see, elifs are valuable when you are checking conditions that are
mutually exclusive.

Key Events

Just as you can use your mouse to interact with the canvas, you can also use your keys.
Common examples include typing to fill in a label and using the arrow keys/ wasd keys to
move a shape around.

The 2 key event methods taught in this unit are onKeyPress(key) and onKeyRelease(key). As
you may have suspected, onKeyPress(key) is called when a key is pressed and
onKeyRelease(key) is called when a key is released.

Shape Methods

For a single shape:

• addPoint(): Adds a point to a regular polygon (i.e. pentagon-> hexagon).
• toFront(): Moves shape to front ofcanvas; i.e., draws it on top of any other shapes in

the way.
• toBack(): Moves shape to the back ofcanvas, behind others
• shape.hits(x, y): Returns True or False depending on whether (x, y) rests within a

drawn part of the shape.
• shape.contains(x, y): Incredibly similar to shape.hits(x, y). The only difference is that if

a shape's fill is None and you move the mouse within its boundaries, shape.hits(x, y)
returns False, while shape.contains(x, y) returns True.

For multiple shapes:

• shape1.hitsShape(shape2): Returns True if shape1 makes contact with shape2.
• shape1.containsShape(shape2): Returns True ifshape1 entirely encompasses shape2.

2 Weeks (12 Days)

• 4.1 Notes and Exercises (2 Days)
• 4.2 Notes and Exercises (2 Days)
• 4.3 Notes and Exercises (2 Days)
• 4.4 End of Unit Exercises (1 Day)

6

Programming with Python CTE

-- -----

• Creative Tasks (3 Days)
• Review/Quizzes (2 Days)

Example Exercise Trippy Text

Unit 5: Complex Conditionals and More Key Events

Complex Conditionals

Complex conditionals are conditionals that can be broken down into several simpler tests.
Compound conditionals contain the keywords and, or, or not .1. Nested conditionals are
conditionals that contain other conditionals inside ofthem (nested).

• And: Can be used to test if two conditionals are both true.
o For example, if ((isSummer == True) and (isSunny == True)) tests if it is both

summer and sunny outside.
• Or: Can be used to check ifat least one oftwo conditionals is true.

o For example, if ((isSummer == True) or (isSunny == True)) tests if it is sunny
outside or it is summer

■ Ifboth conditions are True, the result is still True.
• Not: Not makes a conditional the opposite ofwhat it normally means. So, (not True) =

False and (not False)= True.
o This can be very useful when you want to check if something is False. For

example, ifyou want to see if it is not sunny outside, you could check if ((not
isSunny) == True)

Nested and compound conditionals are mostly interchangeable, it's just a matter of
whichever makes your code the most clear and concise. Ifyou have a ton of nested
conditionals, condensing some of them into compounds might be beneficial, and vice versa.
This is not a strict rule, but in 15-112 at CMU, the following style guidelines tend to be helpful
for beginners in keeping code neat. Consider the following criteria when trying to clean up
functions with lots of complex conditionals:

Function is short (<20 Function is long (>20 lines)
lines)

Lines are short (<80 Nice! Use compound
characters) conditionals

Lines are long (>80 Use nested conditionals Write helper function(s)
characters)

More Key Events

In addition to the other key events discussed earlier, we have onKeyHold(keys). This function
is slightly different than the others. First, as the name suggests, it is called when a key is held
down-between onKeyPress(key) and onKeyRelease(key). It is unique up to this point in the
course in that it is called repeatedly as long as the key is held down. In addition, this function
has the parameter keys rather than key. meaning that it uses something called a list. We will
discuss lists more in the future; for now, just know that the keys list can store any number of

7

Programming with Python CTE

·keys that are being held down at once. To check if a key is being held, use a test with the
keyword "in."

• For example, to see if 'x' is being held down, you would use

if ('x' in keys).

2 weeks (10 Days)

• 5.1 Notes and Exercises (2 Days)
• 5.2 Notes and Exercises (2 Days)
• 5.3 End of Unit Exercises (1 Day)
• Creative Tasks (3 Days)
• Review/Quizzes (2 Days)

Example Exercise Biking

Unit 6: Groups, Step Events, and Motion

Groups

Groups are great for ... well, grouping multiple shapes together. Let's revisit the cactus code
from earlier. Now, with each key press we increase the height of the whole group of cacti.

Why might you want to put all the cacti into a group? Because there are a lot ofhandy group
methods that you can do cool stuff with, and it's a lot more efficient than changing each shape
individually.

Group Properties/Methods

Groups have the exact same properties that all shapes share (this does not include shape
specific properties like radius). Similarly, methods that work on all shapes work on groups
but change every shape within the group. This is incredibly useful and makes coding complex
behaviors much easier. In addition, there are some group specific methods, which are listed
below:

group.add(shape): Adds a new shape to the group

group.remove(shape): Ifyou give a shape a variable name, says, you can later remove it from
the group by calling group.remove(s).

• This will also delete the shape from the canvas.

group.clear(): Removes all shapes currently in a group

• Just like remove, this deletes every shape from the canvas.

Step Events and Motion

For the first time in our course, we will now be dealing with events that are independent of
the user. The function onStep() is called repeatedly a certain number of times per second.
This is similar to onKeyHold(keys), but rather than being called over and over again only
when the user is holding down a key, onStep() is always called over and over again. It is an
incredibly useful event function that perhaps most notably allows you to simulate smooth,

8

Programming with Python CI'E

constant motion on the canvas. The number of times this function is called per second can be
changed by setting app.stepsPerSecond to the desired number ofcalls per second.

onStep() is commonly used to create motion, like in the example below. However, it can also
be used to do many other things including changing rotateAngle, increasing size, etc:really
changing any shape property in a formulaic way.

3 weeks (15 Days)

• 6.1 Notes and Exercises (2 Days)
• 6.2 Notes and Exercises (2 Days)
• 6.3 Notes and Exercises (3 Days)
• 6.4 End of Unit Exercises (3 Days)
• Mid-Year/ Semester Creative Tasks (3 Days)
• Review/Quizzes (2 Days)

Example Exercise Hungry Giraffe

Unit 7: New Shapes, Local Variables, and For Loops

New Shapes

Arc(centerX, centerY, width, height, startAngle, sweepAngle) effectively draws an oval but
only fills in the portion starting at startAngle and moving clockwise by [sweepAngle] degrees.

Additionally, we can now make arrows by setting the optional parameters
arrowStart/arrowEnd to True when drawing a line.

Local Variables

We have been using variables to store shapes for many units now, but they can store anything
you want them to, not just shapes. So far, we have frequently been creating variables outside
of any function, and then modifying them inside of other functions. This type ofvariable-one
defined outside of any function,- is called a global variable, and it can be accessed and
modified anywhere in the code.

• Global variables (often just called globals) should be used very sparingly.

We have also been using function parameters extensively, and one oftheir defining
properties is that they can't be referenced outside of their function. (For example, it makes no
sense to reference keys in onMousePress). We haven't focused a lot on this behavior, but
parameters behave this way because they are a type of local variable. A local variable is a
variable defined inside ofa function, which it can only be referenced inside ofits function. (It
is "invisible" anywhere outside of its function.)

While parameters were used to introduce the idea of local variables, they are not the only
type of local variables. In fact, the more common type is a helper variable, which is a variable
defined inside of a function in order to make reading and writing the code easier.

9

Programming with Python CTE

In the example above, width and height are global variables, x, y, and text are parameters,
and bw and s are helper variables.

• Note-this is bad code. There is no need to make width and height globals. It is done
here as a demonstration, but in practice you should avoid using globals wherever
possible.

For Loops:

Loops are perhaps one ofthe most important concepts in programming. To understand how
they work, imagine that you are flipping through a book. On each page, you do something
(read it). Thinking in Python, we might say:

for page in book:

read(page)

Generally, we don't read books in Python (besides dictionaries). More often, you will be
looping through numbers, where you can think ofeach number as a page. We use range(n) to
represent the numbers (o, 1, 2, ... n-1).

Even ifyou're already familiar with loops, there's still one use particular to our framework
that you should know: looping through a group. Ifyou have a group, g, comprised ofshapes
s1, s2, ... You can loop through the group's 'children', g.children, to change the properties of
each shape in the group. This behavior is illustrated in the example below:

2 Weeks (12 Days)

• 7.1 Notes and Exercises (2 Days)
• 7.2 Notes and Exercises (1 Day)
• 7.3 Notes and Exercises (2 Days)
• 7.4 End of Unit Exercises (2 Days)
• Creative Tasks (3 Days)
• Review/Quizzes (2 Days)

Example Exercise Space Invaders

Unit 8: Math Functions, Random Values, and Nested Loops

More Operators

As you have seen up to this point, computer science relies heavily on mathematics. Anything
in code that represents a basic math function Oike +, -, *,and/) is called an operator. You
have been using operators for many units now, but there are many more that you have not
been introduced to yet.

One such operator is called integer division and is denoted by / / in Python. Integer division
divides two numbers, and then ignores any decimals that are produced.

• For example, 5//2 =2, 12//10 =1, and 9//3 =3

10

Programming with Python CTE

The other new operator introduced in this unit is remainder (sometimes called modulus) and
is denoted by%. Remainder returns the remainder left over when you divide two numbers,
just like you learned back in elementary school.

• For example, 5%2 =1, 12%10 =2, and 9%3 =o

Remainder has many uses, but in this course, we will only be interested in two.

• Ifx%2 == o, xis even and if x%2 == 1, xis odd.
• x%10 returns the ones digit ofx.

Math Functions

In addition to these new operators, we will also be introducing some new math functions in
this unit.

abs(x) - returns the absolute value ofx

distance(x1, y1, x2, y2) - returns the distance between the two input points

angleTo(x1, y1, x2, y2) - returns the angle from one point to another with o degrees being
straight up

getPointlnDir(xl, yi, angle, distance) - returns the x and y coordinates ofa point the given
distance and angle from the input

Random values

We will often use random values in our exercises to make them change each time they run.
While there are several ways to do this, the only one we will use in this course is randrange.

• randrangeOo, high): returns a random value between lo and high, including lo but
excluding high. (So randrange(-1,2) returns -1, o, or 1.)

Nested loops

Whenever we put one loop inside ofanother, we are using nested loops. This is useful for 2D
grids, where the outer for loop represents rows and the inner one represents columns.

3 Weeks (13 Days)

• 8.1 Notes and Exercises (2 Days)
• 8.2 Notes and Exercises (3 Days)
• 8.3 Notes and Exercises (2 Days)
• 8.4 End of Unit Exercises (1 Day)
• Creative Tasks (3 Days)
• Review/Quizzes (2 Days)

Example Exercise Compass

Unit 9: Types, Strings, and While Loops

Types

We don't cover types too extensively, but the following chart gives a good summary:

11

Programming with Python CTE

· Note that you can combine 2 strings using the plus sign, you can turn an int into a string
using str(), and you can turn a string into an int using int().

• "Hello" + ", World!" is equal to "Hello, World!"
• str(42) is equal to "42"
• int("42") is equal to 42

Why don't we cover types extensively? While types are incredibly important, they are out of
the scope ofthis course, and arguably of Python itself. Python is a high-level language,
meaning it is basically built upon a more primitive language and comes loaded with all sorts
of helpful tools-tools that allow you to not sweat over types, among other things. But ifyou
have any high fliers or are a bit ofa mad-hatter yourself, consider the following rabbit holes:

• Functional Programming
o Immutability

• Imperative Programming
o Size ofVarious Types in C Language

Strings

As mentioned earlier, text in Python is more often referred to as strings. In the following
examples, consider s = 'CS Academy'.

It is possible to look at specific letters in a string by referring to their location relative to? the
beginning (starting at o like always). This is known as indexing. The following examples show
the correct syntax.

• s[o] = 'C'
• S[1] = 'S'
• S[-1] = S[len(s) - 1] = 'y'

Just like you can look at an individual character in a string, you can also look at a specific
series of characters. This is called a substring, and we can obtain it in a very similar way to
indexing. The inputs for getting substrings are the same as those in range, except we use
colons instead ofcommas to separate them.

• S[o:2] = 'CS'
o Note that s[2] (the space) is not included

• S[3:] = 'Academy'
• S[:3] ='CS'
• S[::] = 'CS Academy'
• S[::2] = 'C cdm'

Additionally, we can check if one string is contained in another by using in. For example, we
can write

if "CS " in "CS Academy":

print("True")

Which will print "True" since "CS " is a substring of"CS Academy".

String Methods

12

Programming with Python CTE

Just like groups and shapes have their own specific methods, strings do too .

.isupper(): Returns a boolean value that tells if the input string is all uppercase .

.islower(): Returns a boolean value that tells ifthe input string is all lowercase .

.isalpha(): Returns a boolean value that tells if the input string is all letters .

.isdigit(): Returns a boolean value that tells if the input string is all digits .

. upper(): Returns a new string that is the same as the input but has all uppercase letters .

.lower(): Returns a new string that is the same as the input but has all lowercase letters.

While Loops

While loops are very similar to for loops, but they continue looping until some condition is no
longer True. Consider the book analogy again

page= 1

eyesTired =False

while (eyesTired == False):

read(page)

page+= 1

if (page> 100):

eyesTired = True

While loops are used when we aren't sure how many times we have to repeat code. (Ifwe did
know, we would just use a for loop.)

2 Weeks (12 Days)

• 9.1 Notes and Exercises (2 Days)
• 9.2 Notes and Exercises (2 Days)
• 9.3 Notes and Exercises (1 Days)
• 9-4 Notes and Exercises (1 Days)
• 9.5 End of Unit Exercises (1 Day)
• Creative Tasks (3 Days)
• Review/Quizzes (2 Days)

Example Exercise Sheep wool

Unit 10: Lists and Return Values

Lists

Lists, like groups, are a collection ofvarious elements. However, while groups exclusively
store shapes, lists can store anything.

13

Programming with Python CTE

The syntax for making a list in Python is 1st = [... things you want to store ...] (i.e. two
enclosing brackets). The elements in a list are separated by commas. So a valid list might be
1st = [1, 2, 3, "easy", "as"].

Another important distinction between lists and groups is that lists can be indexed, just like
strings, but groups can't.

Despite their similarities, it's generally wiser to put shapes in a group than a list. Lists do not
have access to the invaluable functions & properties that groups do. In fact, the only reason
you would ever want to use a list instead of a group to store shapes is ifyou need the index of
the shape; you cannot index in a group.

List Methods:

• L.append(elm): Adds an element to the end of a list
• L.pop(): Removes and returns the element from the vecy end of list

o Optionally, you can instead call L.pop(index) to remove & return the element
stored at [index] from the list

• choice(L): Returns a randomly-chosen element from the list

Return Values

group.hitTest(mouseX, mouseY): Returns the frontmost shape within the given group that is
hit by the input x and y coordinates.

To return something at the end of a function, simply call "return something":

def isEven(num):

ifnum % 2 ==
o:

return True

else:

return False

Note that a function can only return one thing; once it returns, any further code is not
evaluated. So the code above can be rewritten like so:

def isEven(num):

ifnum % 2 == o:

return True

return False

We can make this code even cleaner still! You can actually return logical statements:

def isEven(num):

return (num % 2 ==
o)

2 Weeks (10 Days)

14

Programming with Python CI'E

' .' • 10.1 Notes and Exercises (1 Day)
• 10.2 Notes and Exercises (1 Day)
• 10.3 Notes and Exercises (2 Days)
• 10.4 End of Unit Exercises (1 Day)
• Creative Tasks (3 Days))
• Review/Quizzes (2 Days)

Example Exercise Whack a Bug

Unit 11: 2D Lists and Board Games

2D Lists

Lists can contain anything-even other lists! This is invaluable for replicating tables, matrices,
etc.

To access an element in a 2D list, use L[row][column] like below.

• L[o][o] == 9
• L[1][2] == 5

To quickly make a 2D list filled with all o's, call makeList(rows, columns).

Remember nested for loops? They're great for looping through 2D lists.

for row in L:

for column in L:

genericFunction(L[row][col])

2 Weeks (9 Days)

• 11.1 Notes and Exercises (2 Days)
• 11.2 Notes and Exercises (1 Day)
• 11.3 End of Unit Exercises (1 Day)
• Creative Tasks (3 Days)
• Review/Quizzes (2 Days)

Example Exercise Essay Editor

Unit 12: Final Project

Images

To load an image, call Image(url, left, top). Store it as a local variable to change its width,
height, and position properties, just as you would for a rectangle.

Sound

15

Programming with Python CTE

.
· To load a sound, call Sound(url) (The url must end in .mp3). You can then call sound.play(),
sound.pause(), and sound.stop() accordingly.

2-4 Weeks

• 12.1 Notes (1 Day)
• End-of-Course Creative Task (10-20 Days)

XI. Texts and Supplemental Instructional materials:
(Primary, Supplemental, newspapers, magazines, and software.)
Please supply ISBN #'s for all texts.

Websites: https://academy.cs.cmu.edu/
https://microbit.org/
https://learn.sparkfun.com/

16

Programming with Python CTE

https://learn.sparkfun.com
https://microbit.org
https://academy.cs.cmu.edu

~ .r, ' SIGNATURES for
REVIEW

Outline prepared by

CTE Principal

Technology Representative
(ifn) licable)

Teacher Representative: Signature indicates course is
aligned to CTE Model

Standards.

Site: Lodi HS &Tokay HS

** Please state rcasonfor no
signature in the space below.

Bear Creek High School

Lodi High School

McN air High School

Tokay High School

Princi al
Lodi High School

McNair High School

Tokay High School

Assistant Superintendent
Curriculum &Instruction

Assistant Superintendent,
Seconda Education

Not Applicable

~

Not taught at this site & no current
CS Teacher

DATE
9/3/2021 Date sent and/or presented to principal for review

9/ 3/2021 Course Outline Submitted

/~C/jcJJ Curriculum Council Recommendation for Approval

Board of Education Approval

17

Programming with Python CI'E

